Tampilkan postingan dengan label asbestos. Tampilkan semua postingan
Tampilkan postingan dengan label asbestos. Tampilkan semua postingan

Minggu, 14 Agustus 2011

Quebec asbestos mine may close in 2012

The Canadian Press
Posted: Jul 22, 2011 3:05 PM ET
Last Updated: Jul 22, 2011 3:05 PM

A confidential federal memo suggests Canada's last fully functional asbestos mine is about to die, raising the prospect the controversial industry might just disappear on its own.
The Natural Resources Canada memorandum, released under the Access to Information Act, estimates that the life of Quebec's Lac d'amiante du Canada will end in early 2012.
This information sheds new light on the international argument over asbestos and suggests that, despite its loud defence of the industry, the Harper government is aware it could die a quiet death.
The vast majority of Canadian asbestos exports come from the facility in Thetford Mines, Que; investors are also hoping to save another mine in nearby Asbestos which has operated infrequently in recent years.
Canada's asbestos industry has nearly disappeared in recent decades amid concerns about the substance's cancer-causing properties. Its opponents call it immoral that Canadians still export to poor countries a product they would not use in their own homes.
But the federal government's own assessment is that the main mine could be gone within months.
"The open-pit Lac d'amiante du Canada (LAC) operation will be the last remaining chrysotile mine in Canada, with an estimated mine life of two to four years," said the February 2008 assessment.
The Canadian Cancer Society says more than 100,000 people die worldwide every year from occupational exposure to asbestos and a growing chorus of health experts have repeatedly called on Canada to stop exporting the mineral.
But the warnings have not changed Ottawa's position on the fibrous mineral.
Last month, the Conservative government steadfastly refused to let the substance be added to an international hazardous-chemicals list -- a United Nations treaty known as the Rotterdam Convention.
The long-held position of the Tories, and other asbestos industry supporters, is that it's safe when handled properly.
Defenders of the industry also credit it for creating hundreds of jobs in the economically depressed region of central Quebec, a point the Conservatives have tried to translate into votes.
Prime Minister Stephen Harper has visited the heartland of Quebec's asbestos industry twice in recent months, including a stop during the federal election campaign. He also chose to celebrate Quebec's Fete nationale holiday in that region.
But is the prime minister's support a moot point?
The federal document surfaces at a critical juncture for the future of Lac d'amiante and, by extension, for the Canadian asbestos industry as a whole.
This week, LAB Chrysotile, the company that manages the mine, said it might shutter the operation indefinitely this November. The closure could effectively halt Canada's active asbestos mining industry.
But company president Simon Dupere insisted the current problems have nothing to do with shrinking deposits of chrysotile buried beneath Thetford Mines.
He said the mine could continue to scoop asbestos out of the ground past 2012, but he declined to specify for exactly how long.
"No, it ain't the case, it's not going to be over by 2012," Dupere said, adding the federal document probably focused on just the proven reserves.
"There's enough resources to last way longer than that... Thetford Mines is full of it. No matter where you look, you could dig and find some."
Dupere blamed the possible closure of the operation on "internal challenges."
"It is labour, it is production, it is development, it is a bit of everything," he said.
The miners' union is banking on the company to overcome these issues to save jobs.
The president of the local branch of the United Steelworkers, which represents the employees, is concerned the mine's closure could put 350 people out of work.
Luc Lachance was surprised to hear that Ottawa believed the mine might run out of asbestos by 2012. He said he was told there's still two and a half years of life left in it.
But he added that for the mine to live on, it needs the provincial government's permission to dig under a closed highway.
"If it goes well, we'll continue, and if it doesn't, they'll close it," he said.
The Quebec government is already holding one shovel that could help the declining industry dig out a future.
The province is considering whether to help revive Canada's only other asbestos operation — the mostly mothballed Jeffrey Mine, which has only been extracting chrysotile sporadically in recent years.
Quebec is prepared to give a $58-million bank-loan guarantee to Jeffrey Mine, as long as it can come up with $25 million from private investors by Aug. 15.
Local asbestos advocates say the financing would relaunch Jeffrey, located in the town of Asbestos, for another 25 years and create 500 jobs.
The Natural Resources memorandum was released under the Access to Information Act and given to The Canadian Press by Kathleen Ruff, a prominent asbestos industry critic and human-rights activist.
A spokeswoman for Natural Resources Canada confirmed the document's authenticity.
© The Canadian Press, 2011
http://www.cbc.ca/news/business/story/2011/07/22/montreal-cp-asbestos-722.html?ref=rss

Senin, 18 Oktober 2010

Asbestos mine gets $3.5M from Que. government

Canadian Cancer Society calls decision 'deplorable'

Last Updated: Monday, August 30, 2010 7:41 PM ET
CBC News

The Jeffrey mine in Asbestos, Que. has been lobbying the provincial government for a $58 million loan. (CBC)
The Quebec government will guarantee a $3.5-million line of credit for one of the country's last asbestos mines.
The money will allow the Jeffrey Mine in Asbestos, Que., to reopen and resume exports of asbestos — also called chrysotile — for the next month.
During that time Bernard Coulombe, the owner and president of Jeffrey Mine, hopes to attract private investors in order to secure a $58-million loan from the provincial government.
The mine's supporters say the $58 million will create 400 direct and 1,000 indirect jobs, and allow the mine to remain open for another 25 years.
Coulombe said the production and use of chrysotile are safe, and the mine needs to meet an international demand for the mineral.
"If we operate now, we have a better chance to be able to attract partners," Coulombe said.
The Canadian Cancer Society, as well as doctors across Quebec and Canada, have lobbied the Quebec government to not support the production of asbestos by lending money to the mine.
"It accounts for about 90,000 deaths each year," said André Beaulieu, spokesperson for Quebec's branch of the Canadian Cancer Society.
"The government ... should provide a transition support to affected communities and find new economies and new businesses locally," Beaulieu said.
Beaulieu is also calling for a global ban on the production of asbestos in all its forms.
More than 50 countries have banned the production and use of asbestos in all its forms, but Canada continues to permit the mining of chrysotile fibres, mainly for export.
The Jeffrey Mine has until the end of December to pay back the loan.

Read more: http://www.cbc.ca/canada/montreal/story/2010/08/30/jeffrey-mine-qc-line-of-credit.html#ixzz0z8VAYHiy

Jumat, 29 Mei 2009

Process Making Fiber Cement old type and improvement

Asbestos fiber cement techhology about 120 years ago, Ludwig Hatschek made the first asbestos reinforced cement products, using a paper-making sieve cylinder machine on which a very dilute slurry of asbestos fibers (up to about 10% by weight of solids) and ordinary Portland cement (about 90% or more) was dewatered, in films of about 0.3 mm, which were then wound up to a desired thickness (typically 6 mm) on a roll, and the resultant cylindrical sheet was cut and flattened to form a flat laminated sheet, which was cut into rectangular pieces of the desired size. Sekitar 120 tahun yang lalu, Ludwig Hatschek membuat pertama kali asbes semen produk, menggunakan mesin kertas silinder dan membuat mesin yang sangat membuat slurry dari serat asbes (hingga sekitar 10% oleh berat solids) dan Portland semen biasa (sekitar 90 % atau lebih) di dewatered, dalam lapisan sekitar 0,3 mm, yang kemudian di buat sampai ketebalan yang dikehendaki (biasanya 6 mm) pada roll, dan lembar yang dihasilkan silinder dan di potong dan flattened untuk membentuk flat sheet yg berlapis-lapis, yang merupakan potong menjadi segi empat lembar ukuran yang dikehendaki. These products were then air-cured in the normal cement curing method for about 28 days. Produk-produk ini adalah pengeringan udara biasa dengan normal pengeringan 28 hari.
For over 100 years, this form of fiber cement found extensive use for roofing products, pipe products, and walling products, both external siding (planks and panels), and wet-area lining boards. Selama lebih dari 100 tahun, ini berupa fiber semen ditemukan luas untuk menggunakan produk atap, pipa produk, dan produk Walling, baik eksternal papan (papan dan panel), dan basah-daerah lining boards. Asbestos cement was also used in many applications requiring high fire resistance due to the great thermal stability of asbestos. Asbes semen juga digunakan dalam berbagai aplikasi yang memerlukan daya tahan tinggi api yang besar karena panas stabilitas asbes. The great advantage of all these products was that they were relative lightweight and that water affected them relatively little, since the high-density asbestos/cement composite is of low porosity and Keuntungan yang besar dari semua produk ini adalah mereka yang relatif ringan dan air dipengaruhi mereka relatif sedikit, karena kepadatan tinggi asbes / semen komposit adalah yang rendah dan kerenikan permeability. permeabilitas. The disadvantage of these products was that the high-density matrix did not allow nailing, and methods of fixing involved pre-drilled holes. Yang merugikan dari produk ini adalah bahwa kepadatan tinggi matriks tidak baik, dan pada pemasangan lubang lubang kecil.
Although the original Hatschek process (a modified sieve cylinder paper making machine) dominated the bulk of asbestos cement products made, other processes were also used to make specialty products, such as thick sheets (say greater than about 10 mm which required about 30 films). Walaupun proses Hatschek asli (yang dimodifikasi saringan silinder mesin pembuatan kertas) didominasi massal asbes semen produk yang dibuat, proses lainnya yang juga digunakan untuk membuat produk-produk khusus, seperti lembaran tebal (katakanlah lebih besar dari sekitar 10 mm yang diperlukan sekitar 30 film) . These used the same mixture of asbestos fibers and cement as with the Hatschek process, although sometimes some process aid additives are used for other processes. Yang sama ini digunakan campuran serat asbes dan semen dengan Hatschek sebagai proses, walaupun terkadang beberapa proses bantuan tambahan ini digunakan untuk proses lainnya. For example, fiber cement composites have been made by extrusion, injection molding, and filter press or flow-on machines. Misalnya, serat semen composites yang telah dibuat oleh pengusiran, injection molding, dan penyaring tekan atau pada aliran-mesin.
Two developments occurred around the middle of the last century that had high significance to modern replacements of asbestos based cement composites. Dua perkembangan yang terjadi di sekitar tengah-tengah abad yang tinggi untuk kepentingan replacements modern yang berbasis asbes semen composites. The first was that some manufacturers realized that the curing cycle could be considerably reduced, and cost could be lowered, by autoclaving the products. Yang pertama adalah bahwa beberapa produsen menyadari bahwa siklus pengeringan dapat sangat dikurangi, dan dapat menurunkan biaya, oleh autoclaving produk. This allowed the replacement of much of the cement with fine ground silica, which reacted at autoclave temperatures with the excess lime in the cement to produce calcium silica hydrates similar to the normal cement matrix. Ini diizinkan penggantian banyak semen dengan tanah halus silika yang reaksi pada temperatur autoclave dengan kelebihan kapur di semen untuk memproduksi kalsium silika hydrates mirip dengan matriks semen biasa. Since silica, even when ground, is much cheaper than cement, and since the autoclave curing time is much less than the air cured curing time, this became a common, but by no means universal manufacturing method. Sejak silika, bahkan ketika tanah, jauh lebih murah dari semen, dan sejak autoclave pengasapan waktu lebih kurang dari pengeringan udara waktu, ini menjadi umum, namun tidak berarti metode manufaktur universal. A typical formulation would be about 5- 10% asbestos fibers, about J khas formulasi akan sekitar 5 - 10% serat asbes, sekitar 30-50% 30-50% cement, and about 40-60% silica. semen, dan sekitar 40-60% silika.
The second development was to replace some of the asbestos reinforcing fibers with cellulose fibers from wood.
Pengembangan yang kedua adalah untuk mengganti beberapa asbes dengan memperkuat serat selulosa dari serat kayu. This was not widely adopted except for siding products and wet-area lining sheets. Ini tidak banyak diadopsi kecuali papan dan produk-daerah basah lining sheet. The great advantage of this development was that cellulose fibers are hollow and soft, and the resultant products could be nailed rather than by fixing through pre-drilled holes. Keuntungan yang besar dari perkembangan ini adalah serat selulosa yang berongga dan lembut, dan produk-produk yang dihasilkan dapat di pasang dengan di lobangkan dulu.. The siding and lining products are used on vertical walls, which is a far less demanding environment than roofing. Lapis dan papan yang digunakan pada produk tembok vertikal, yang merupakan permintaan lingkungan jauh lebih sedikit dari atap. However, cellulose reinforced cement products are more susceptible to water induced changes, compared to asbestos cement composite materials. A typical formulation would be about 3-4% cellulose, about 4-6% asbestos, and either about 90% cement for air cured products, or about 30-50% cement and about 40-60% silica for autoclaved products.
Asbestos fibers had several advantages. Serat asbes telah beberapa keunggulan. The sieve cylinder machines require fibers that form a network to catch the solid cement (or silica) particles, which are much too small to catch on the sieve itself. Asbestos, although it is an inorganic fiber, can be"refined"into Asbes, meskipun merupakan anorganik serat, bisa "disempurnakan" menjadi many small tendrils running off a main fiber. They are stable at high temperatures. Mereka stabil pada suhu tinggi. They are stable against alkali attack under autoclave conditions. Hence, asbestos reinforced fiber cement products are themselves strong, stiff (also brittle), and could be used in many hostile environments, except highly acidic environments where the cement itself is rapidly attacked chemically. The wet/dry cycling that asbestos roofing products were subjected to, often caused a few problems, primarily efflorescence, caused by the dissolution of chemicals inside the products when wet, followed by the deposition of these chemicals on the surfaces of the products when dried. Efflorescence caused aesthetic degradation of roofing products in particular, and many attempts were made to reduce it. Because the matrix of asbestos reinforced roofing products was generally very dense (specific gravity about 1.7), the total amount of water entering the product even when saturated was relatively low, and the products generally had reasonable freeze thaw resistance. If the density was lowered, the products became more workable (for example they could be nailed) but the rate of saturation and the total water absorption increased and the freeze thaw performance decreased.
Alternative Fiber Cement Technologies In the early 1980's, the health hazards associated with mining, or being exposed to and inhaling, asbestos fibers started to become a major health concern. Alternatif Fiber Semen Technologies . Manufacturers of asbestos cement products in the USA, some of Western Europe, and Australia/New Zealand in particular, sought to find a substitute for asbestos fibers for the reinforcement of building and construction products, made on their installed manufacturing base, primarily Hatschek machines. Over a period of twenty years, two viable alternative technologies have emerged, although neither of these has been successful in the full range of asbestos applications.
In Western Europe, the most successful replacement for asbestos has been a combination of PVA fibers (about 2%) and cellulose fibers (about 5%) with primarily cement (about 80%), sometimes with inert fillers such as silica or limestone (about 10- 30%). This product is air-cured, since PVA fibers are, in general, not autoclave stable. It is generally made on a Hatschek machine, followed by a pressing step using a hydraulic press.
This compresses the cellulose fibers, and reduces the porosity of the matrix. Since PVA fibers can't be refined while cellulose can be, in this Western European technology the cellulose fiber functions as a process aid to form the network on the sieve that catches the solid particles in the dewatering step. This product is used primarily for roofing (slates and corrugates). It is usually (but not always) covered with thick organic coatings. The great disadvantage of these products is a very large increase in material and manufacturing process costs. While cellulose is currently a little more expensive than asbestos fibers at $500 a ton, PVA is about $4000 a ton. Thick organic coatings are also expensive, and hydraulic presses are a high cost manufacture step.